B2B  |  Feedback  |  COSIS.net on Facebook COSIS.net News on Twitter


Lost Login Data?

Science News


Courtesy of the NOAA Pacific Marine Environmental Laboratory

Source article

Open Access Article

Published By

Dr. Dick van der Wateren

Tags

Ocean acidification, Shells, Carbon dioxide


Follow @COSISnews on Twitter


Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification

05.12.2010, Age: 2879 days

Due to the increase of atmospheric carbon dioxide acidity of the world's oceans is increasing. This new study by a group of German marine geologists and biologists shows that organisms that form calcareous shells may cope with a certain degree of acification, but will be harmed by the higher levels expected near the end of this century.

Abstract

CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 μatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 μatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 μatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 μatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 μatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.

Thomsen, J., Gutowska, M. A., Saphörster, J., Heinemann, A., Trübenbach, K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Körtzinger, A., Wahl, M., and Melzner, F.: Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, 7, 3879-3891, doi:10.5194/bg-7-3879-2010, 2010.


Twitter Facebook LinkedIn Google Bookmarks Linkarena Newsvine Oneview Stumbleupon Windows Live Yigg

Add Comment (login required)