FINE STRUCTURE OF THE THERMAL AND NON-THERMAL X-RAYS IN THE SN 1006 SHELL

A. Bamba (1), R. Yamazaki (1), M. Ueno (1), and K. Koyama (1)

(1) Department of Physics, Kyoto University (bamba@cr.scphys.kyoto-u.ac.jp/Fax: +81-75-753-3799)

The shock front of SN 1006 is the most probable acceleration site of high energy electrons (up to ~ 100 TeV) with the Fermi acceleration mechanism. Using the Chandra archive data, we resolve the spatial structure of the shocked region in thermal and non-thermal X-rays. The thermal X-rays have a $\sim 100''$-width shell, consistent with the Sedov solution. On the other hand, that of the non-thermal X-rays is very sharp, $\sim 20''$, or about 0.2 pc at a distance of 1.8 kpc. The scale length of the upstream edge is a few times of the gyro radius of 60 TeV electrons in 6.5 μG, whereas that of the downstream edge is roughly equal to the characteristic scale length of the gas advection.