Climate and marine carbon cycle response to changes in the strength of the southern hemispheric westerlies

L. Menviel (1), A. Timmermann (2), A. Mouchet (3), O. Timm (2)
(1) Department of Oceanography, SOEST, University of Hawai’i, USA; (2) IPRC, SOEST, University of Hawai’i, USA; (3) Département AGO, Université de Liège, Liège, Belgium

It has been previously suggested that changes in the strength and position of the southern hemisphere westerlies could be a key contributor to glacial-interglacial atmospheric CO$_2$ variations. To test this hypothesis, we perform a series of sensitivity experiments using an earth system of intermediate complexity. A strengthening of the climatological mean winds over the Southern Ocean induces stronger upwelling and enhances the formation of Antarctic Bottom Water. Enhanced Ekman pumping brings Dissolved Inorganic Carbon (DIC)-rich waters to the surface, leading to a reduction of the mean CO$_2$ uptake in the Southern Ocean. However, enhanced upwelling also supplies more nutrients to the surface, thereby enhancing marine export production in the southern hemisphere and decreasing the atmospheric CO$_2$ concentration. The net response is small (~5 ppmv) compared to the full glacial-interglacial CO$_2$ amplitude of ~90 ppmv.