Carbon dioxide degassing at Bagni San Filippo (Tuscany, Italy): quantification and modelling of gas release

M. Donnini (1), G. Chiodini (2), R. Avino (2), A. Baldini (1), C. Cardellini (1), S. Caliro (2), F. Frondini (1), D. Granieri (2), N. Morgantini (1)

(1) Dipartimento di Scienze della Terra, Università di Perugia, Italy, (2) INGV-Napoli, Osservatorio Vesuviano, Napoli, Italy (geochem@unipg.it / Fax: +39 0755852603)

The area of Bagni San Filippo (BSF) is located in the NW periphery of the Mt. Amiata volcano, in the eastern side of the Siena-Radicofani graben, is part of the Mt. Amiata geothermal region and is located within a regional CO$_2$ flux anomaly interesting the whole Perityrrhenian sector of central Italy. The geological framework of BSF is characterized by outcrops carbonate-evaporite triassic-giurassic formations in the western side and by liguides flysch overlying the carbonate-evaporite sequence on the eastern side. BSF is affected by a strong and widespread CO$_2$ emission that emerges as vents, diffuse soil emissions, large travertine deposits and as CO$_2$ rich thermal water outflows of HCO$_3$-SO$_4$-Ca-Mg composition and temperatures from 23 to 48°C. The strong CO$_2$ emission represents a natural hazard in the area as indicated by the lethal accidents occurred to humans also in recent times. A multi-parametric geochemical study of the BSF area was performed in 2003-2004 in order to quantify the CO$_2$ degassing, to define the conceptual model of the degassing process and to constrain a physical-numerical modeling of the system. A general soil CO$_2$ flux survey showed the presence several degassing structures that were investigated by specific surveys. The mapping of CO$_2$ flux, by geostatistical method, highlighted that the larger CO$_2$ degassing structures are associated to faults involving the carbonate formations and to areas of actual or “fossils” water outflow (i.e., where travertine outcrops). A total CO$_2$ release of about 150-200 t/d was estimated. A geochemical reaction pat model of water-rock-gas interaction was then applied to the thermal waters in order to model the dissolved carbon content and the composition of dissolved gas. The comparison of experimental data with the model supports that the thermal waters are the result of the
mixing between shallow groundwater and a hot, CO\textsubscript{2} rich, vapour phase reasonably derived by an underling geothermal system. Coupling together the results of the CO\textsubscript{2} flux survey with geochemical, hydrogeological and geological data the following conceptual model was derived for upper part of BSF system: the groundwater recharge, from local carbonate outcrop, infiltrates and circulates in the buried carbonate aquifers where it is heated (up to 60\degree C) and enriched in CO\textsubscript{2} (up to 10 bar of P\textsubscript{CO2}) by the input of the geothermal vapor. This anomalous and relatively shallow aquifer feeds both CO\textsubscript{2} soil degassing and the thermal water outflow. The physical feasibility of such conceptual model was successfully tested by a physical-numerical simulation using the TUOGH2 code.