The year 2002 will culminate in the publication of the third volume of the fundamental interdisciplinary work "Atlas of Temporal Variations in Natural, Anthropogenic and Social Processes", which now will comprise three volumes (1994, 1998, 2002). The Atlas has pooled the information on the main peculiarities of processes' behaviour in various natural and humanitarian spheres over the widest temporal and spatial range. The main scientific goal of the work consists in discovering the behaviour pattern of natural, anthropogenic and social processes and the cause and effect links between them. Thus, the Atlas contains extensive comparative generalisation from the vastly different data. For one thing, it is a fundamental work on the law-governed nature of evolution in natural and social spheres; for another, it can be used as a reference book and valuable source of information for research in different directions. The authors seek to treat every piece of information as part of an integrated whole. When analysing the data, we operate on the premise that surrounding nature, society and their elements are open dynamic systems. Systems of this kind exhibit non-linear characteristics and a tendency towards ordered and chaotic behaviour. These features are revealed in the course of the analysis of time series. The data processing procedures applied are unified, all processes being generally expressed in terms of their time series and time-spectral diagrams. The technique is aimed at determination of investigated parameters' rhythms and the analysis of their evolution. This approach enables us to show the dynamics of processes occurring in absolutely dissimilar objects and performs their comparative analysis, with particular emphasis placed on rhythms and trends. As a result successions of illustrations are obtained and formed the basis of the Atlas. The Atlas covers processes that occur in objects belonging to the lithosphere, atmosphere, hydrosphere and social sphere as well as in the cosmos. For example, these
are such natural processes as seismicity of the Earth and the Moon, solar activity, the rotational velocity of the Earth, volcanicity, geomagnetic field variations, crustal movements, water levels, deformation processes etc. Comparison of the dynamics of the processes in different objects of the lithosphere and other spheres enables us to formulate some fundamental laws underlying these processes and to single out the stable common features of their temporal behaviour. They can be treated as the laws underlying the objects’ response to external influence. We invite contributions to the following instalments of the Atlas.