MIDDLE-ATMOSPHERIC RESPONSE TO A FUTURE INCREASE IN HUMIDITY CAUSED BY INCREASED METHANE EMISSION

Ian MacKenzie and R.S. Harwood
The University of Edinburgh (Contact iam@met.ed.ac.uk)

The response of the middle atmosphere to an increase in humidity arising from a possible future increase in CH$_4$ is examined in a general circulation model with interactive H$_2$O and O$_3$. A chemical parameterization allows the middle-atmospheric H$_2$O change to evolve naturally from an imposed change in tropospheric CH$_4$. First, a simulation of the year 2060 using postulated loadings of the radiatively-active gases is compared with a control simulation of the present-day atmosphere. Then, the particular contribution of the CH$_4$ (and hence H$_2$O) change to the observed difference is isolated by repeating the 2060 simulation without the projected CH$_4$ change. Under the IPCC SRES B2 scenario, the middle atmosphere in 2060 cools by up to \sim5 K relative to 1995, with the CH$_4$-derived increase in H$_2$O accounting for \sim10% of the change. The cooling is accompanied by a strengthened general circulation, intensified dynamic heating rates, and a reduction in the mean age of middle-atmospheric air. Around 20% of the increased prevalence of polar stratospheric clouds (PSCs) in 2060 is due to the microphysical effect of the extra H$_2$O, with the remainder attributable to the reduced vortex temperatures. Although the PSC increase facilitates release of reactive chlorine, this positive impact on chemical O$_3$ destruction is outweighed by the negative impact of the reduced total chlorine in 2060. Nonetheless, the H$_2$O increase does make the 2060 Arctic O$_3$ loss \sim15% greater than it would otherwise be.